
An Approach of a Technique for Effort Estimation of Iterations in Software
Projects

José Antonio Pow-Sang
Pontificia Universidad Católica del Perú

Perú
japowsang@pucp.edu.pe

Enrique Jolay-Vasquez
Carnegie Mellon University

USA
ejolay@andrew.cmu.edu

Abstract

The estimation of effort and cost is still one of the

hardest tasks in software project management. At the
moment, there are many techniques to accomplish this
task, such as Function Points, Use Case Points and
COCOMO, but there is not much information available
about how to use those techniques in non-waterfall
software lifecycles such as iterative or spiral lifecycles
projects.

This paper shows the results obtained when
applying a technique to estimate the effort of each
construction iteration in software development projects
that use iterative-incremental lifecycles. The results
were obtained from software projects of a fourth-year
course in Informatics. The technique proposes the use
of Function Points and COCOMO II.

1. Introduction

The growing complexity of software development
that was caused by the well known “Software Crisis”
has been addressed through innovative methods,
methodologies, techniques and, paradigms to minimize
its impact. The scope of those proposals is not limited
exclusively to activities that are related to the systems
development itself because it also involves
management activities. One of these activities is the
estimation of software projects.

Despite the complexity of the software estimation,
sometimes it is only performed by an estimation expert
himself. In the last decades, some techniques have
been developed to estimate the effort of complete
software projects such as Function Points [24] and Use
Case Points [10]. Even more, these techniques – that
are independent of the final development technology –
were conceived to be applied in the development of
systems that were based on the structured paradigm
with a classic or waterfall lifecycle Royce [19] being

hard to utilize them for an object-oriented development
and iterative-incremental lifecycles that are so used
lately. In fact, it also seems interesting that these
estimation techniques exhaustively use the information
produced by the application of some techniques such
as Use cases’ method, for their own purposes.

Although there is not much work related to this
problem, one interesting work is an approach proposed
by Mogagheghi et al [12]. They define a Use Case
Point technique adaptation for incremental software
development projects.

Acknowledging the advantages present in the
experiments involving students [5] and considering the
problematic exposed lines above, this article shows an
experience n the application of a technique based on
Function Points (FP) that proposes a calculation of an
estimation of the effort for every iteration. This
experience was conducted on junior students of the
Computer Engineering Program at “Pontificia
Universidad Católica del Peru (PUCP)” that were
enrolled in Software Engineering course in Spring 04,
Fall 04 and Spring 05.

This article has been divided in 7 different parts:
Section 2 shows a brief summary of the Function
Points technique, COCOMO II and its relation to Use
Cases; Section 3 shows the technique to estimate and
plan the software development for iterative-
incremental lifecycle; Section 4 presents the
information of the projects with students; Section 5
shows the obtained results; Section 6 develops a
discussion of the results using both techniques and
finally, conclusions and future projects related to this
experience are presented.

2. The Estimation Techniques and Uses
Cases.

This section shows a brief summary of the Function
Points Technique and COCOMO II as well as its

relation with uses cases. In addition, an overview of
similar projects developed in relation to effort
estimation is presented.

2.1. Function Points Technique

Function Points [24] were introduced by Albrecht

[1] and its purpose is a software measurement
qualifying it by the functionality that provides
externally based upon the system logical design. The
objectives of this technique are:

• To measure user requirements and what user
really gets.

• To provide a software measurement regardless
the technology utilized in the system
deployment.

• To provide a size metric for quality analysis
and productivity purposes.

• To provide an alternative for software
estimation.

• To provide a normalization factor to compare
different software.

The analysis of Function Points has been conducted
considering five basic external system parameters:
External Input (EI), External Output (EO), External
Query (EQ), Internal Logic File (ILF) and, External
Interface File (EIF).

Using these parameters, Unadjusted Function Points
(UFP) are determined. After that, an adjustment factor
is applied to UFP. This factor is obtained based on
subjective valorizations of the system application and
its environment

2.2. COCOMO II and Function Points

COCOMO II, proposed and developed by Barry
Boehm [4], is one of the best documented and utilized
models for cost estimation. This model determines the
effort, time and, schedule required when planning a
software development project. This estimation is based
on the size of the project which is expressed in the
number of code lines estimated to develop a software
product.

Due to the complexity of software projects, the
COCOMO (COnstructive COst MOdel) original model
was modified obtaining a new one: COCOMO II. This
new model can estimate the effort, time and, schedule
needed, using three different sub models: Applications
Composition, Early Design and Post Architecture
models.

The model proposes a set of cost drivers which
indicates the context in which the project is currently
set. These drivers are used to determine the Effort
Adjustment Factor (EAF), which is utilized to compute

the necessary effort to complete the project. The
relation between these drivers and the post architecture
model is shown in Table 1

Table 1. Cost Drivers for the Post-Architecture
Model in COCOMO II

Cost Driver Description
RELY Required software reliability
DATA Database size
CPLX Product complexity
RUSE Reusability required
DOCU Documentation match to lifecycle needs
TIME Execution time constraint
STOR Main storage constraint
PVOL Platform volatility
ACAP Analyst capabilities
PCAP Programmer capabilities
PCON Personnel Continuity
AEXP Applications experience
PEXP Platform experience
LTEX Programming language experience
TOOL Use of software tools
SITE Multisite Development

A new feature included in the new model is that it

can determine the effort and time of a software project
using Unadjusted Function Points, which is a big
advantage given that in most cases, it is hard to
estimate the number of code lines of the software that
will be built even more when there is almost nothing or
no previous experience in software projects
whatsoever. Therefore both models – Function Points
and COCOMO II – are very compatible and
complementary.

2.3. Use Cases and Function Points

Uses Cases were introduced in 1987 as an Objetory
technique tool. Its utilization in Software Engineering
Processes was proposed by Ivar Jacobson and
published in his book “Object-Oriented Software
Engineering” [9].

Nowadays, use cases’ utilization has been extended
due to its inclusion in UML [13][20], so that its usage
in Object-Oriented Software development has turned
into a “must”.

David Longstreet, in one of his articles [11],
indicates that the analysis of Function Points can be
applied in conjunction with uses cases in a very
straightforward way. This will improve the quality of
the documents of user requirements. It will also
improve the estimation of a software project. The
application of the Function Points technique can verify
and validate the content of a specification document of
software requirements.

 It seems to be interesting that when applying both
techniques, the count of Function Points can be
updated every time the use cases change so that the
impact of a specific use case in the estimation of the
complete project development can be determined.

Thomas Fetcke [7] proposes a way to utilize the
Function Points technique in along with the Jacobson’s
OOSE methodology [9]. The relation that he shows is
based on the use cases and the class diagrams of the
analysis proposed by that methodology. In his
proposal, he does not specify the type of lifecycle that
should be followed in his technique, so that it can be
inferred that the waterfall lifecycle should be used.

3. A technique for planning and
estimating iterations of a software project
using Function Points

According to [14], a technique to estimate and plan
iterations was proposed based on Function Points and
COCOMO II. It was also used for this experience.

The technique has 2 phases: First, the uses cases
needed for every iteration has to be determined.
Secondly, the estimation for each iteration has to be
estimated. In the following subsections, the activities
involved in each phase are mentioned in detail.

3.1. Determining the Use Cases needed per
iteration (phase 1)

The objective in this phase is to determine the use
cases that are to be implemented per iteration. For this
purpose, it is previously necessary to have identified
and specified every use case present in the software.
Those use cases also have to be included in the
specifications of software requirements (for use cases
specifications, recommendations in [2], [3] and, [23]
may be used as well as for specifications of software
requirements [8] and [18] may be used).

For this activity, it is proposed that a new diagram
is used. This diagram will be called “precedence
diagram” in which the preconditions of every use case
contained in the specifications are presented
graphically. The idea of this diagram was taken from
Doug Rosengberg [21], who proposes the usage of a
similar diagram, specifying the relations: “precedes”
and “invoke” to determine user requirements. The
figure 1 shows an example of a precedence diagram.

The diagram will be used to know what use case
needs a functionality or information that is managed or
implemented by some other use case. Indeed, this will
be useful in determining what use case must be
programmed earlier in such a way that what is

necessary in a uses case has already been developed in
a previous iteration.

Figure 1. Precedence diagram example

Consequently, the use cases that are on the left of

the diagram will be implemented before the ones that
are on the right. In figure 1, “Use Case A” will be
implemented before “Use Case C”.

It is important to highlight that in this diagram,
Included and Extended Use Cases have not been
considered due to they can be part of other use cases
that refers to them.

3.1. Effort estimation per iteration (phase 2).

After Phase 1 is completed, in phase 2 Function
Points technique and COCOMO II are proposed to
determine the effort that will be needed for each
iteration.

First of all, it is necessary to determine the
Unadjusted Function Points (UFP) per iteration. The
criterion followed to adapt this technique for iterative-
incremental lifecycles is to consider that the result of
the computation of the UFP of the complete project
without considering iterations (Total_UCP) must be
equal to the sum of the Unadjusted Function Points
computed per iteration separately

∑
=

=
n

i

iUCPUCPTotal
1

)(_

One of the most important contributions of this
proposal is to determine the UFP of the Internal
Logical Files (ILF) and the External Interface Files
(EIF) for each use case. For this purpose, this
technique proposes the usage of the following formula
(File_UCP(j) = Unadjusted Function Point for a use
case “j” due to files ILF/EIF, TCU(i) = total of use
cases that uses a ILF/EIF “i”, Weight(i)= Weight due to
the complexity of ILF/EIF “i”, i= ILF/ EIF used in use
case “j” and j= use case involved)

∑
=

=
n

i
ixWeight

iTUC
jUCPFile

1
)(

)(

1
)(_

 Use case B

Use case A

 Use case C
 Use case D

<<precede>>

<<precede>> << precede >>

Using the results obtained from the previous
formula and knowing which use case will be developed
for each iteration, the UFP will be determined by
means of the files present in the iteration. Next, the
UFP corresponding to the transactions will be added.
To accomplish this task, the following formula will be
used (i=iteration, TUFP(i)=Total of UFP for iteration
“i”, File_UFP(j)= UFP for a use case “j” due to
ILF/EIFs, Trans_UFP(j)= UFP due to transactions
(EI,EO,EQ) and j=use case subject to be implemented
in an iteration “i”.

[] []∑
=

+∑
=

=
n

j
jUFPTrans

n

j
jUFPFileiTUFP

1
)(_

1
)(_)(

The next step is using COCOMO II and the UFP of

each iteration, the effort expressed in man-month is
obtained per iteration and using this value, time and
human resource needed to complete the whole project
can be estimated

It is important to mention that the context of the
project is subject to change from one iteration to the
other (knowledge of the development platform,
integration of the developer team) so that it could be
necessary to re-estimate the effort required by next
iterations. This can be accomplish by reviewing files
(ILF/EIF) and transactions (EI, EO y EQ) in case of
change of requirements and recalculating cost drivers
proposed by COCOMO in case of organizational or
contextual changes.

Although the technique suggest using COCOMO II
to calculate effort in man-month per each iteration, the
results shown in section 5 of this paper only use
COCOMO’s EAF factor to get estimated effort in
second iteration based on the real effort obtained in
first iteration.

4. Projects Information

The projects, that the results are shown in section 5
of this paper, were developed by junior students (4th
year) of Informatics Program that were enrolled in the
Software Engineering course in Spring 04, Fall 04 and
Spring 05. This is a core course from the Software
Engineering program area. In this subject the students
had to develop a software project. Its duration was
fourteen (14) weeks.

In Spring 04, the students did not use the whole
technique, they only use precedence diagram to plan
construction iterations. The objective was to collect
empirical data to determine if the technique could be
useful in software projects.

Knowing the good results obtained in Spring 04,
two objectives were clearly defined in Fall 04 and

Spring 05 terms: Firstly, the students had to apply the
Function Points technique to estimate the effort of the
second and third iteration based on their own effort in
previous iterations. Secondly, it was to collect
empirical data and to observe the results in the
application of the technique.

4.1. The students and work teams

The students were divided in groups of 11 or 12
people. The groups were formed based on the
following criteria: Same proportion of students that
had excellent academic performance (“A/A+”
students) among the groups and equal number
proportion of men and women. These criteria had been
considered critical in the success of a software project
based on empirical data from past experiences that
department’s professors had.

The table 2 shows previous knowledge and
experiences that the students had prior to begin the
academic Term.

Table 2. Previous knowledge and experiences that the

students had prior to begin the academic Term.

Characteristic Knowledge and/or Experience
Programming
Language /
Programming
Environment

• Java, C#, Pascal, C and Prolog.
• No previous experience using

Delphi.

Databases • Oracle 8.
• No previous experience using

MS SQL Server.
Analysis and Design
Techniques

• Structured and Object-oriented

Project Management • Experience in managing
developing projects that
included short software
programming projects (Work
Team of 3 or 4 students).

• No previous planning and
estimation experience.

The vast majority of courses in the Informatics

program at PUCP focus software projects as an
application of theoretical concepts but they do not
demand the application of planning and estimation
techniques when developing software projects.

4.2. Project Characteristics

Every team had to develop a software system. The
topics for the projects were different in every academic
term to avoid plagiarism. The table 3 shows the topics
per term. Although the projects were different, both of
them correspond to a type of information system which
input/output processes are similar. Therefore, results

obtained from the three different academic periods are
comparable.

Table 3. Topics chosen per academic Term.

Semester Topic
Spring 04 Department-store system
Fall 04 Fast-food restaurant system
Spring 05 Library system

The methodology used by every team was RUP[18].

The duration of the project was 14 weeks which is the
length of an academic term at PUCP. Before beginning
the construction phase, each team had to finish the
Software Requirements Specifications document
(SRS)[8] as well as use cases. Client/server 2-tiered
[22] architecture was used and validated through a
prototype.

Every team had to develop three iterations of the
construction phase. Each iteration took exactly 2 weeks
of work. The number of use cases developed and
implemented in the second and third iteration was
based on the effort in previous iterations.

A teacher assistant (TA) was assigned to every
team. This TA was in charge of the team and helped
them throughout the project supporting the students to
obtain an adequate SRS for business processes of a real
company. It is necessary to mention that TA are
constantly working in real software projects at
Peruvian companies of software development with an
average of 7 years of experience in the field.

The following table shows the software used for the
Project development.

Table 4. Software used for the Project.

Item Software
Programming Language Delphi 7.0
Operating System Microsoft Windows 2000
Database Microsoft SQL Server 2000
Modeling Software Rational Rose
Documenting Software MS Office 2003

4.3. Data Collection

In a weekly basis, students had to turn in a report of
the hours needed to work in an activity per day. The
format was a MS Excel worksheet as the one as shown
in figure 2:

It is important to mention that students were told
that the grading was going to be based upon the
accomplishment of every use case identified for each
iteration. In addition, they were informed that final
grade was not influenced by the number of hours
invested in the project. This was specified to ensure the
honesty in the effort recorded by each team member.

Week 1

Activity

26
/0

9/
20

04
27

/0
9/

20
04

28
/0

9/
20

04
29

/0
9/

20
04

30
/0

9/
20

04
01

/1
0/

20
04

02
/1

0/
20

04
03

/1
0/

20
04

04
/1

0/
20

04

1 Internal coordination meetings

2
Project control meetings (with TA and
lecturer)

3 Document preparation

4
Project management activities (project plan
development, control, etc)

5 Software requirements specification

6 Specify system architecture

7 Test plan preparation

8 GUI design

9 Detailed design (not GUI) and programming

10 Software tests

11 Software integration

12 User manual elaboration
TOTAL 0 0 0 0 0 0 0 0

Week effort (in p-h) 0 W

Figure 2. MS Excel worksheet to register worked hours

By means of class meetings with each team, the

criterion to fill out the worksheets was ensured to be
the same for everyone in the group. In the beginning,
there were some problems due to some students that
recorded more hours than the real ones used in the
project.

5. Results

The proposed technique has been use in software

projects in which participates only one person having
encouraging results (an example of its application is
documented in a master thesis document [16]). The
obtained results encouraged us to try the proposal in
new software projects including those in which more
than one person participates.

The following table shows the obtained results of
each team in the Spring 2005 term.

Table 5. Results of teams in spring 2005 term.

Team A Team B Team C
Iter.

UFP Real
Effort* UFP Real

Effort* UFP Real
Effort*

1 191.69 307 138.00 248 313.00 151.04

2 200.61 195 234.17 238 170.00 139.29
* Measured in men-hours

Nowadays, there are no people in Peru that are

certified in the technique of Function Points so results
could not be validated although directions and
recommendations included in the Function Points [24]
manual were followed. In addition, the documentation
was reviewed by someone who has two years of
experience in Function Points and was a Master
student from the Software Engineering program at
Technical University of Madrid in Spain where this
technique is mandatory and applied in a final software
project.

Team members had worked in projects in previous
semesters, and this is why the context of interpersonal
relationships was the same in all iterations. Besides, it
can be observed that the only change in the context of
each iteration was the programming tool knowledge
and the application experience (LEXP and AEXP cost
driver).

A magnitude of relative error (MRE) was utilized to
show results in tables 6, 7 and 8 of this section where
y= real effort and ŷ= estimated effort [6]

y
yy

MRE
ˆ−

=

To compute the estimated effort for iterations, the

following formula was used where
est_effort(i)=estimated effort, EAF(i)= COCOMO’s
EAF factor for the iteration “i” and, real_effort(j)=real
effort for iteration “j”.

∑
−

=
×

−
=

1

1)(

)(_

1

)(
)(_

i

j jEAF

jeffortreal

i

iEAF
ieffortest

The results obtained of the estimation effort and the

MRE for the project in the second iteration in Spring
05 are presented in tables 6, 7 and 8. For more
information the reader may find Spring 04 and Fall 04
results included in [15] [17] (in Spanish).

Table 6. MRE of team A in spring 2005 term

Iter. COCOMO's
EAF Factor

Real
Effort*

Estimate
Effort* MRE

1 1.46 1.602 -

2 0.8 0.972 0.878 9.72%
* Measured in men-hours

Table 7. MRE of team B in spring 2005 term

Iter. COCOMO's
EAF Factor

Real
Effort*

Estimate
Effort* MRE

1 1.46 1.797 -

2 0.8 1.016 0.985 3.11%
* Measured in men-hours

Table 8. MRE of team C in spring 2005 term

Iter. COCOMO's
EAF Factor

Real
Effort*

Estimate
Effort* MRE

1 1.46 2.072 -

2 0.8 1.220 1.135 6.96%
* Measured in men-hours

From the results obtained it is observed that in the

second iteration the MRE is less than 10% in all teams
meaning that the utilized technique was accurate.
Unfortunately, real effort of third iteration was not
registered by the students and that is why they are not
included in tables 6, 7 and 8.

The following table shows the results obtained in
three academic terms.

Table 9. MRE of each team by academic term of
second iteration

Second Iteration
Term Team

Number
of

Members
Real

Effort*
Estimated

Effort*
MRE

Spring
2004 A 10 2.533 2.234 11.79%

A 11 1.556 1.669 7.28% Fall 2004
B 12 2.193 2.297 4.72%

A 10 0.972 0.878 9.72%

B 10 1.016 0.985 3.11%
Spring
2005

C 9 1.220 1.135 6.96%
* Measured in men-hours/UFP

From the results obtained in the 3 semesters it is
observed that in the second iteration the MRE is less
than 12% in all teams meaning that the utilized
technique was accurate.

It is important to mention that EAF factors used to
calculate estimated effort in table 9 were the same for
all teams: 1.46 for first iteration and 0.8 for second
iteration.

Real effort showed in previous tables does not
consider effort of internal and control meetings (row 1
and 2 of figure 2) because we only wanted to consider
effective work utilized in software construction
(detailed design, programming and testing).

6. Final Discussion

Although the obtained information has been

collected from six projects and the results obtained are
encouraging for the proposed technique, it cannot be
stated that this technique is reliable for some other
context. Some comments coming from students in
regard to thus technique are
• The technique was a useful tool to measure the

size of the software each team had to implement
per iteration.

• The recorded effort in the first iteration was useful
to compute and estimate next iteration’s effort.

It can also be observed that the utilized effort of
both teams is different. For instance, in the second
iteration, in spring 2005 term, Team A required 0.972
man-hours/UFP. Unlike that, Team B required 1.016
man-hours/UFP. Something similar occurs for all the
teams in three semesters (it is shown in table 9).

The fluctuation that is shown in the previous table is
due to some factors such as the number of students per
team and the capacity of teamwork being some of them
hard to quantity.

It is hard to generalize the obtained results to other
contexts different than the academic one. The
advantage of experimenting with students is that some
factors and/or variable can be controlled which is
difficult to do in real-world industry projects.

Some of them are:
• Knowledge and expertise of members of the

development team. In the real world industry, it is
hard that every team member has the same
experience in project development. In some cases,
team members do not have the necessary
knowledge, for instance, about Object-Oriented
analysis and design as well as implementation.

• People Reassignment. In the industry, it is
frequent that team members are reassigned
throughout the project. For instance, they can be
assigned to some other project. For this
experience, there were no reassignments.

• Change of requirements. It also happens
throughout a project. This factor can be controlled
in an academic project.

• Sequence of requirements implementation. In this
experience, the implementation was conducted
following a precedence diagram, which sometimes
cannot be done in a real-world project due to the
interdependence between construction precedence
and user requirements.

Obtained results could be applied in the industry
under certain circumstances: A team with a lot of
expertise in application development that has a project

in which they have to use a new tool and programming
language.

7. Conclusions and Future Work

The majority of approaches to estimate projects,
even when defining themselves as independent from
technologies and lifecycle, have a characteristic highly
influenced by waterfall lifecycles. In spite of their
validity for some other approaches, for example
iterative-incremental lifecycles which does not offer
any guide to accomplish the adaptation.

The present article presents a technique that is based
on Function Points to estimate the effort in projects
that utilize iterative-incremental lifecycles. In addition,
results obtained from the application of the technique
in students’ projects are shown. The advantage of
working with students is that many factors and
variables that can affect the project (knowledge, level
of expertise, context of iteration), can be controlled.

Results obtained from the experience are very
encouraging because the proposed technique provides
a relative error between the estimated effort and real
effort less than 12%. Every team used data coming
from previous iterations to estimate the effort needed
for next iterations. Those results are not final due to the
need of more testing not only involving students but
also some real-world projects.

The future work in regard to this article is:
• To adapt the proposed technique in such a way

that the files are replaced by UML-classes to have
an adaptation to an object-oriented perspective.

• To conduct experiences in which the sequence
diagram cannot be followed. Sometimes it
happens that the priority of the required
implementation in industry projects is very
different

• To adapt the proposed technique to other
techniques such as Use Case Points.

• To conduct experiences involving students to
compare the effectiveness with other techniques
such as COSMIC-FFP and Use cases points to
estimate the effort of iterations in software
projects.

8. Acknowledments

The authors would like to thank Dra. Ana María

Moreno, professor from Technical University of
Madrid, for her invaluable comments to prepare Fall 04
experience.

Besides, we would like to thank all students who
participated in the projects and the anonymous
reviewers for their comments. These comments will be

considered to improve this proposal and included in
next experiments.

9. References

[1] Albrecht, A. J. Measuring Application Development
Productivity, IBM Applications Development Symposium,
Monterey, CA, USA, 1979.

[2] Bittner, K., Use Case Modeling, Addison-Wesley, USA,
2003.

[3] Bittner, K., “Why Use Cases Are Not Functions”,
http://www.therationaledge.com, USA, 2000.

[4] Boehm, B., et al., Software cost estimation with
COCOMO II, Prentice-Hall, USA, 2000.

[5] Carver, J., Jaccheri, L., Morasca, S., Issues in Using
Empirical Studies in Software Engineering Education,
Proceedings METRICS’03, IEEE Computer Society, USA,
2003.

[6] Conte, D., Dunsmore, H., Shen, V., Software Engineering
Metrics and Models, Benjamin-Cummings, Menlo Park CA,
1986.

[7] Fetcke, T., Bran, A., Nguyen, T., Mapping the OO-
Jacobson Approach into Function Point Analysis.
Proceedings of TOOLS-23’97, IEEE, USA, 1997.

[8] IEEE Computer Society, IEEE Std 830-1998,
Recommended Practice for Software Requirements
Specifications, The Institute of Electrical and Electronics
Engineers, USA, 1998.

[9] Jacobson, I., Object-Oriented Software Engineering. A
Use Case Driven Approach, Addison-Wesley, USA, 1992.

[10] Karner, G. Metrics for Objectory. Diploma thesis,
University of Linköping, Sweden. No. LiTH-IDA-Ex-
9344:21. December 1993.
[11] Longstreet, D., Use Case and Function Points,
http://www.softwaremetrics.com/, Longstreet Consulting Inc,
USA, 2001.

[12] Mohagheghi, P., Anda, B., Conradi, R., Effort
Estimation of Use Cases for Incremental Large-Scale
Software Development, Proceedings ICSE 2005,
ACM-Press, USA, 2005.

[13] Object Management Group, OMG Unified Modeling
Language, http://www.uml.org, USA, 1999.

[14] Pow-Sang, J., Imbert R., Estimación y Planificación de
Proyectos Software con Ciclo de Vida Iterativo-Incremental
y empleo de Casos de Uso, Proceedings IDEAS 2004,
Arequipa-Perú, 2004.

[15] Pow-Sang, J., Una Experiencia con Estudiantes para la
Estimación del Esfuerzo de cada Iteración en Proyectos de
Software, Proceedings XXXI Conferencia Latinoamericana
de Informática-CLEI 2005, Pontificia Universidad Javeriana,
Cali-Colombia, 2005.

[16] Pow-Sang, J., GESPROMET, Sistema para la Gestión
de Proyectos de Software Utilizando MÉTRICA Versión 3.
Tesis de Máster en Ingeniería del Software, Universidad
Politécnica de Madrid, España, 2002.

[17] Pow-Sang, J., Estudio Comparativo de Técnicas para la
Estimación del Esfuerzo de las Iteraciones de Proyectos
Software, Proceedings JIISIC’04, Madrid-España, 2004.

[18] Rational Software, Rational Unified Process version
2001A.04.00.13, USA, 2001.

[19] Royce, W. W., Managing the Development of Large
Software Systems: Concepts and Techniques. Proceedings
WESCON, 1970.

[20] Rumbaugh, I., Jacobson, I., Booch, G., Unified
Modeling Language Reference Manual, Addison Wesley,
1997.

[21] Rosenberg, D., Scott, K., Use Case Driven Object
Modeling with UML, Addison-Wesley, Massachusets, USA,
1999.

[22] Sadoski, D., Two Tier Software Architectures,
http://www.sei.cmu.edu/str/descriptions/twotier.html, SEI,
USA, 2004.

[23]Schneider, G. and Winters, J. Applying Use Cases – A
Practical Guide, 2nd Edition. Addison-Wesley. USA, 2001.

[24] The International Function Point User Group (IFPUG),
Function Point Counting Practices Manual-Release 4.1,
USA, 1999.

